Acta Crystallographica Section A

Foundations of Crystallography

ISSN 0108-7673

Received 16 January 2011
Accepted 12 April 2011

Seitz notation for symmetry operations of space groups

Daniel B. Litvin ${ }^{\text {a* }}$ and Vojtěch Kopskýb
${ }^{\text {a }}$ Department of Physics, Eberly College of Science, The Pennsylvania State University, PennState Berks, PO Box 7009, Reading, Pennsylvania, PA 19610-6009, USA, and ${ }^{\text {b }}$ Bajkalska 1170/28, 10000 Prague 10, Czech Republic. Correspondence e-mail: u3c@psu.edu

Space-group symmetry operations are given a geometric description and a shorthand matrix notation in International Tables for Crystallography, Volume A, Space-Group Symmetry. We give here the space-group symmetry operations subtables with the corresponding Seitz ($\mathrm{R} \mid \mathbf{t}$) notation for each included symmetry operation.
© 2011 International Union of Crystallography Printed in Singapore - all rights reserved
with each centering translation given as a trio of numbers is placed above the general positions. For example, above the general positions of the face-centered space group $F 23$ one finds:

$$
\begin{equation*}
(0,0,0)+\left(0, \frac{1}{2}, \frac{1}{2}\right)+\left(\frac{1}{2}, 0, \frac{1}{2}\right)+\left(\frac{1}{2}, \frac{1}{2}, 0\right)+ \tag{4}
\end{equation*}
$$

In $I T C-A$, in addition to representing the symmetry operations indirectly by symbols representing translational groups \mathbf{T} and by general positions representing the symmetry operations $g_{i}, i=1,2$, \ldots, n of equation (1), a second geometric description of the symmetry operations $g_{i}, i=1,2, \ldots, n$ was introduced under the heading 'Symmetry operations'. In this geometric description the previous symmetry operation is given as ' $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$ ', where the ' 2 ' denotes a rotation of $360^{\circ} / 2=180^{\circ}$, ' $0, y, 0$ ' the orientation and position of the axis of rotation, i.e. along the y direction passing through $x=z=0$, and ' $\left(0, \frac{1}{2}, 0\right)$ ' a translation of one-half the shortest lattice translation along the y axis. For space groups without centering translations, the format of a 'Symmetry operations' subtable is

> Symmetry operations
> $g_{i}, i=1,2, \ldots, n$
with the $g_{i}, i=1,2, \ldots, n$ given in this geometric description notation. For space groups with centering translations, the format is:

$$
\begin{align*}
& \text { Symmetry operations } \\
& (0,0,0)+\text { set } \\
& g_{i}, i=1,2, \ldots, n \\
& \left(t_{2}\right)+\text { set } \\
& t_{2} g_{i}, i=1,2, \ldots, n \\
& \quad \vdots \\
& \left(t_{m}\right)+\text { set } \\
& t_{m} g_{i}, i=1,2, \ldots, n . \tag{6}
\end{align*}
$$

In addition to this general-position shorthand description of the matrix notation of symmetry operations and the geometric description of symmetry operations, there is a third notation which has been adopted and is used by solid-state physicists (Burns \& Glazer, 2007). This is the so-called Seitz notation (R|t) introduced by Seitz (1934, $1935 a, b, 1936$) in a series of papers on the matrix-algebraic development of the crystallographic groups. In this notation ' R ' denotes a

1	2a	2b	2c	3	4	5	6	7	8	9	10	11	12
1)	1		x, y, z	1	e	E	E	1	1	h_{1}	E	ε	1
2)	2	0,0,z	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{z}$	$2{ }_{2}$	$2{ }_{2}$	C_{22}	C_{22}	$2{ }_{2}$	$4{ }_{3}^{2}$	h_{4}	U^{2}	$\delta_{2 z}$	4
3)	2	0,y,0	$\overline{\mathrm{x}}, \mathrm{y}, \overline{\mathrm{z}}$	2 y	2 ,	$\mathrm{C}_{2 y}$	$\mathrm{C}_{2 y}$	2 y	$4{ }_{2}^{2}$	h_{3}	$\mathrm{U}^{\text {y }}$	$\delta_{2 y}$	3
4)	2	x,0,0	x, \bar{y}, \bar{z}	2 x	2 x	$\mathrm{C}_{2 \mathrm{x}}$	$\mathrm{C}_{2 \mathrm{x}}$	2 ¢	$4{ }_{1}^{2}$	h_{2}	U^{x}	$\delta_{2 x}$	2
5)	3^{+}	x, x, x	z, x, y	$3 \mathrm{x} / 2$	3 p	C_{31}^{+}	C_{31}^{+}	38	31	h_{9}	$\mathrm{C}_{3}^{\text {x/2 }}$	$\delta_{\text {3x2 }}$	9
6)	3^{+}	$\overline{\mathrm{x}}, \mathrm{x}, \overline{\mathrm{x}}$	z, \bar{x}, \bar{y}	$3_{x y z^{-1}}{ }^{-1}$	3 s	C_{34}^{+}	C_{34}^{+}	3_{β}	$3{ }_{3}$	h_{10}	$\mathrm{C}_{3}^{2 \times \times \mathrm{x} / 2}$	$\delta_{3 \times \bar{y} \bar{z}}$	10
7)	3^{+}	$\mathrm{x}, \overline{\mathrm{x}}, \overline{\mathrm{x}}$	\bar{z}, \bar{x}, y	$3{ }^{x} x^{-1}$	3	C_{33}^{+}	C_{33}^{+}	$3{ }_{\text {a }}$	34	h_{12}	$\mathrm{C}_{3}^{2 \mathrm{x} \times 2}$	$\delta_{3 \times \text { x/ }}$	12
8)	$3{ }^{+}$	\bar{x}, \bar{x}, x	$\bar{z}, \mathrm{x}, \overline{\mathrm{y}}$	$3_{x \times 2}{ }^{-1}$	3_{9}	C_{32}^{+}	C_{32}^{+}	$3{ }_{\gamma}$	32	h_{11}	$\mathrm{C}_{3}^{2 x y \bar{z}}$	$\delta_{3 \times \mathrm{y} \text { 2 }}$	11
9)	3.	x, x, x	y,z,x	$3{ }_{x / 2}{ }^{-1}$	$3{ }_{p}^{2}$	C_{31}^{-}	C_{31}^{-}	$3{ }_{\text {\% }}^{2}$	$3{ }_{1}^{2}$	h_{5}	$\mathrm{C}_{3}^{2 \times \mathrm{y} / 2}$	$\delta_{3 \times 2}{ }^{-1}$	5
10)	3	$\mathrm{x}, \overline{\mathrm{x}}, \overline{\mathrm{x}}$	\bar{y}, z, \bar{x}	$3{ }^{\text {xy }}$,	$3{ }_{\text {r }}^{2}$	C_{33}^{-}	C_{3}^{-}	3_{α}^{2}	$3{ }_{4}^{2}$	h_{7}	$\mathrm{C}_{3}^{\overline{x y 2}}$	$\delta_{3 \times 3 \mathrm{z}}{ }^{-1}$	7
11)	3	$\overline{\mathrm{x}}, \overline{\mathrm{x}}, \mathrm{x}$	y, \bar{z}, \bar{x}	$3_{\text {x } \mathrm{y} \overline{2}}$	$3_{\text {q }}^{2}$	C_{32}^{-}	C_{32}^{-}	3_{γ}^{2}	32	h_{6}	$\mathrm{C}_{3}^{\times \bar{z} \overline{2}}$	$\delta_{3 \times y_{2}}{ }^{-1}$	6
12)	3	$\overline{\mathrm{x}}, \mathrm{x}, \overline{\mathrm{x}}$	$\overline{\mathrm{y}}, \overline{\mathrm{z}}, \mathrm{x}$	$3_{\text {xyz }}$	$3{ }_{\text {s }}{ }^{2}$	C_{34}^{-}	C_{34}^{-}	3_{β}^{2}	$3{ }_{3}^{2}$	h_{8}	$\mathrm{C}_{3}^{\text {xj2 }}$	$\delta_{3 \times \times 2}{ }^{-1}$	8
13)	2	x, x, 0	$\mathrm{y}, \mathrm{x}, \overline{\mathrm{z}}$	$2{ }^{\text {xy }}$	$2{ }_{\text {xy }}$	$\mathrm{C}_{2 a}$	$C_{2 B}^{\prime}$	2	21	h_{16}	$\mathrm{U}^{\text {xy }}$	$\delta_{x y}$	16
14)	2	$\mathrm{x}, \overline{\mathrm{x}}, 0$	$\overline{\mathrm{y}}, \overline{\mathrm{x}}, \mathrm{z}$	$22_{\text {xy }}$	$2_{\text {xy }}$	$\mathrm{C}_{2 b}$	$C_{2 b}^{\prime}$	2	$2{ }_{2}$	h_{13}	$\mathrm{U}^{\text {xy }}$	$\delta_{\text {xy }}$	13
15)	4	0,0,z	y, \bar{x}, z	$4{ }^{-1}$	4_{z}^{3}	$\mathrm{C}_{4 z}^{-}$	$\mathrm{C}_{4 \mathrm{z}}^{-}$	4_{z}^{3}	$4{ }_{3}^{3}$	h_{15}	C_{4}^{32}	$\delta_{4 z}{ }^{-1}$	15
16)	4^{+}	0,0,z	$\overline{\mathrm{y}}, \mathrm{x}, \mathrm{z}$	$4{ }_{2}$	$4{ }_{2}$	$\mathrm{C}_{4 z}^{+}$	$\mathrm{C}_{4 z}^{+}$	$4{ }_{2}$	43	h_{14}	C_{4}^{2}	$\delta_{4 z}$	14
17)	4	x,0,0	x, z, \bar{y}	$4{ }^{-1}$	4_{x}^{3}	$\mathrm{C}_{4 \times}^{-}$	$\mathrm{C}_{4 \times}^{-}$	4_{x}^{3}	$4{ }_{1}^{3}$	h_{20}	$\mathrm{C}_{4}^{3 \mathrm{x}}$	$\delta_{4 \times 1}{ }^{-1}$	20
18)	2	0,y,y	$\overline{\mathrm{x}}, \mathrm{z}, \mathrm{y}$	2 y	2 ra	$\mathrm{C}_{2 d}$	$\mathrm{C}_{2 d}^{\prime}$	2 a	25	h_{18}	$\mathrm{U}^{\text {x2 }}$	$\delta_{y 2}$	18
19)	2	0,y, \bar{y}	$\overline{\mathrm{x}}, \bar{z}, \bar{y}$	$22_{\text {y } 2}$	$2{ }_{\text {y }}$	$\mathrm{C}_{2 f}$	$\mathrm{C}_{2 f}^{\prime}$	2 b	26	h_{17}	$\mathrm{U}^{\text {y/2 }}$	$\delta_{\text {yz }}$	17
20)		x,0,0	x, \bar{z}, y	$4 \times$	$4 \times$	$\mathrm{C}_{4 \times}^{+}$	$\mathrm{C}_{4 \times}^{+}$	4 ¢	41	h_{19}	$\mathrm{C}_{4}^{\mathrm{x}}$	$\delta_{4 \times}$	19
21)	4^{+}	0,y,0	z, y, \bar{x}	$4{ }^{4}$	$4{ }^{\text {y }}$	$\mathrm{C}_{4 \mathrm{y}}^{+}$	$\mathrm{C}_{4 y}^{+}$	$4 y$	42	h_{24}	C_{4}^{y}	$\delta_{4 y}$	24
22)	2	x,0,x	z, \bar{y}, x	$2{ }_{\text {x }}$	$2{ }_{2 x}$	C_{2}	$C_{2 c}^{\prime}$	2 。	23	h_{23}	$\mathrm{U}^{\text {x }}$	$\delta_{x z}$	23
23)	4	0,y,0	$\bar{z}, \mathrm{y}, \mathrm{x}$	$4{ }^{-1}$	$4{ }_{y}^{3}$	$\mathrm{C}_{4 y}^{-}$	$\mathrm{C}_{4 y}^{-}$	$4{ }_{y}^{3}$	4_{2}^{3}	h_{22}	$\mathrm{C}_{4}^{3 y}$	$\delta_{4 y}{ }^{-1}$	22
24)	2	$\overline{\mathrm{x}}, 0, \mathrm{x}$	$\bar{z}, \bar{y}, \bar{x}$	$2_{\text {x } 2}$	$2_{2 \bar{x}}$	$\mathrm{C}_{2 \mathrm{e}}$	$C_{2 e}^{\prime}$	$2{ }_{\text {d }}$	24	h_{21}	$u^{\bar{x} x^{2}}$	$\delta_{\text {x }}$	21

1	2	a 2 b	2c	3	4	5	6	7	8	9	10	11	12
25)	T	0,0,0	$\bar{x}, \bar{y}, \bar{z}$	1	i	1	i	T	2	h_{25}	1	i	25
26)	m	$x, y, 0$	x, y, \bar{z}	m_{2}	m_{2}	σ_{2}	σ_{z}	m_{2}	m_{3}	h_{28}	σ^{2}	ρ_{z}	28
27)	m	x, $0, \mathrm{z}$	x, \bar{y}, z	m_{y}	m_{y}	σ_{y}	σ_{y}	m_{y}	m_{2}	h_{27}	σ^{y}	ρ_{y}	27
28)	m	0,y,z	$\overline{\mathrm{x}}, \mathrm{y}, \mathrm{z}$	$\mathrm{m}_{\text {x }}$	m_{x}	$\sigma_{\text {x }}$	$\sigma_{\text {x }}$	m_{\times}	m_{1}	h_{26}	σ^{x}	ρ_{x}	26
29)	$\overline{3}^{+}$	x, x, x	$\bar{z}, \bar{x}, \bar{y}$	$\overline{3}_{\text {x } / 2}$	$\overline{3}^{\text {p }}$	S_{61}^{-}	S_{61}^{-}	$\overline{3}_{8}$	$\tilde{6}_{1}^{5}$	h_{33}	$S_{6}^{5 x y z}$	$\sigma_{\text {6x/2 }}$	33
30)	$\overline{3}^{+}$	$\overline{\mathrm{x}}, \mathrm{x}, \overline{\mathrm{x}}$	$\bar{z}, \mathrm{x}, \mathrm{y}$	$\overline{3}_{\text {x } \overline{\text { y }}}{ }^{-1}$	$\overline{3}_{\text {s }}$	S_{64}^{-}	S_{64}^{-}	$\overline{3}_{\beta}$	$\tilde{6}_{3}^{5}$	h_{34}	$\mathrm{S}_{6}^{\text {xj2 }}$	$\sigma_{\text {6xyz }}$	34
31)	${ }^{+}$	$\mathrm{x}, \overline{\mathrm{x}}, \overline{\mathrm{x}}$	z, x, \bar{y}	$\overline{3}_{\bar{x} \times 2}{ }^{-1}$	$\overline{3}$	S_{63}^{-}	S_{63}^{-}	$\overline{3}^{\text {a }}$	$\tilde{6}_{4}^{5}$	h_{36}	$\mathrm{S}_{6}^{\text {x, }}$	$\sigma_{\text {bxyz }}$	36
32)	${ }^{+}$	$\overline{\mathrm{x}}, \overline{\mathrm{x}}, \mathrm{x}$	z, \bar{x}, y	$\overline{3}_{x / 2}{ }^{-1}$	$\overline{3}_{9}$	S_{62}^{-}	S_{62}^{-}	3\%	$\tilde{6}_{2}^{5}$	h_{35}	$\mathrm{S}_{6}^{x / \bar{z}}$	$\sigma_{\text {bxyz }}$	35
33)	$\overline{3}$	x,x,x	$\bar{y}, \bar{z}, \bar{x}$	$\overline{3}_{x \times 2}{ }^{-1}$	$\overline{3}_{p}^{5}$	S_{61}^{+}	S_{61}^{+}	$\overline{3}^{2}$	$\tilde{6}_{1}$	h_{29}	$\mathrm{S}_{6}^{\mathrm{xyz}}$	$\sigma_{\text {6x } \times 2}{ }^{-1}$	29
34)	3	$\mathrm{x}, \overline{\mathrm{x}}, \overline{\mathrm{x}}$	y, \bar{z}, x	$\overline{3}_{\text {xy }}$	$\overline{3}^{5}$	S_{63}^{+}	S_{63}^{+}	$\overline{3}_{\alpha}^{2}$	$\tilde{6}_{4}$	h_{31}	$\mathrm{S}_{6}^{5 \mathrm{x} / \mathrm{z}}$	$\sigma_{6 x y 2}{ }^{-1}$	31
35)	3	x, x, x	$\bar{y}, \mathrm{z}, \mathrm{x}$	$\overline{3}_{x / \overline{2}}$	$\overline{3}_{9}^{5}$	S_{62}^{+}	S_{62}^{+}	$\overline{3}_{\gamma}^{2}$	$\tilde{6}_{2}$	h_{30}	$\mathrm{S}_{6}^{5 \times \times \bar{z}}$	$\sigma_{6 \times \times 2}{ }^{-1}$	30
36)	$\overline{3}$	$\overline{\mathrm{x}}, \mathrm{x}, \overline{\mathrm{x}}$	y, z, x	$\overline{3}_{\text {xyz }}$	$\overline{3}^{-5}$	S_{64}^{+}	S_{64}^{+}	$\overline{3}^{2}$	$\tilde{6}_{3}$	h_{32}	$\mathrm{S}_{6}^{5 \times \mathrm{y} \text { 2 }}$	$\sigma_{6 \times \times 2}{ }^{-1}$	32
37)	m	$\mathrm{x}, \overline{\mathrm{x}}, \mathrm{z}$	$\overline{\mathrm{y}}, \overline{\mathrm{x}}, \mathrm{z}$	m_{xy}	$\mathrm{m}_{\text {xy }}$	$\sigma_{\text {da }}$	$\sigma_{\text {d1 }}$	$\mathrm{m}_{\text {e }}$	m_{5}	h_{40}	$\sigma^{x y}$	$\rho_{x y}$	40
38)	m	x, x, z	$\mathrm{y}, \mathrm{x}, \mathrm{z}$	$\mathrm{m}_{\text {xy }}$	$\mathrm{m}_{\mathrm{x} \bar{\prime}}$	$\sigma_{\text {db }}$	$\sigma_{\text {d2 }}$	m_{1}	m_{4}	h_{37}	$\sigma^{\text {xy }}$	$\rho_{x y}$	37
39)	4.	0,0,z	$\overline{\mathrm{y}}$, $\mathrm{X}, \overline{\mathrm{z}}$	$\overline{4}^{-1}$	$\overline{4}_{2}^{3}$	$S_{4 z}^{+}$	$S_{4 z}^{+}$	$\overline{4}^{3}$	$\tilde{4}_{3}$	h_{39}	S_{4}^{2}	$\sigma_{42}{ }^{-1}$	39
40)	${ }^{+}$	0,0,z	y, \bar{x}, \bar{z}	$\overline{4}_{2}$	$\overline{4}_{2}$	$S_{4 z}^{-}$	$S_{4 z}^{-}$	$4{ }_{2}$	$\tilde{4}_{3}^{3}$	$\mathrm{h}_{3 \mathrm{~B}}$	S_{4}^{32}	$\sigma_{4 z}$	38
41)		x,0,0	\bar{x}, \bar{z}, y	$4{ }^{-1}$	$\overline{4}^{3}$	$S_{4 x}^{+}$	$S_{4 \times}^{+}$	$\overline{4}^{3}$	$\tilde{4}_{1}$	h_{44}	$\mathrm{S}_{4}^{\mathrm{x}}$	$\sigma_{4 \times}{ }^{-1}$	44
42)	m	x, y, \bar{y}	x, \bar{z}, \bar{y}	m_{rc}	m_{52}	$\sigma_{\text {dd }}$	$\sigma_{\text {d4 }}$	ma_{a}	m_{9}	h_{42}	$\sigma^{\text {r2 }}$	$\rho_{\text {y } 2}$	42
43)	m	x, y, y	x,z,y	$\mathrm{m}_{\mathrm{y} 2}$	$\mathrm{m}_{y \bar{z}}$	$\mathrm{otr}^{\text {d }}$	$\sigma_{\text {d6 }}$	mb_{b}	m_{8}	h_{41}	$\sigma^{\bar{y} z}$	$\rho_{y z}$	41
44)	4^{+}	x,0,0	\bar{x}, z, \bar{y}	$\overline{4}^{\text {x }}$	$\overline{4}^{\text {x }}$	$S_{4 x}^{-}$	$S_{4 \times}^{-}$	$\overline{4}^{\text {x }}$	$\tilde{4}_{1}^{3}$	h_{43}	$\mathrm{S}_{4}^{3 \mathrm{x}}$	$\sigma_{4 x}$	43
45)		0,y,0	$\overline{\mathrm{z}}, \overline{\mathrm{y}}, \mathrm{x}$	4y	$\overline{4}_{y}$	$S_{4 y}^{-}$	$S_{4 y}^{-}$	${ }^{4}$	$\tilde{4}_{2}^{3}$	h_{48}	$\mathrm{S}_{4}^{3 y}$	$\sigma_{4 x}$	48
46)	m	$\bar{x}, \mathrm{y}, \mathrm{x}$	\bar{z}, y, \bar{x}	m_{x}	$\mathrm{m}_{2 \mathrm{x}}$	$\sigma_{\text {dc }}$	$\sigma_{\text {d3 }}$	m_{c}	m_{7}	h_{47}	$\sigma^{x 2}$	$\rho_{x z}$	47
47)	4	$0, y, 0$	z, \bar{y}, \bar{x}	$4{ }^{4}{ }^{-1}$	$\overline{4}_{y}^{3}$	$S_{4 y}^{+}$	$S_{4 y}^{+}$	$\overline{4}_{y}^{3}$	$\tilde{4}_{2}$	h_{46}	$\mathrm{S}_{4}^{\mathrm{y}}$	$\sigma_{4 \times}{ }^{-1}$	46
48)	m	x, y, x	z, y, x	$\mathrm{m}_{\mathrm{x} z}$	$m_{2 \bar{x}}$	$\sigma_{\text {de }}$	$\sigma_{\text {d5 }}$	$\mathrm{m}_{\text {d }}$	m_{6}	h_{45}	$\sigma^{\text {x/ }}$	$\rho_{\text {zix }}$	45

Figure 1
Comparison table of notation used for the point-group R operation of Seitz notation and the corresponding symbols used in $I T C$ - A : cubic point-group operations.
rotation or rotation-inversion through the origin of the coordinate system used, and ' \mathbf{t} ' is a translation. The identity, product and inverse of symmetry operations are written, in Seitz notation, as
$(1 \mid 0,0,0)$

$$
\begin{align*}
& \left(\mathrm{R}_{1} \mid \mathbf{t}_{1}\right)\left(\mathrm{R}_{2} \mid \mathbf{t}_{2}\right)=\left(\mathrm{R}_{1} \mathrm{R}_{2} \mid \mathrm{R}_{1} \mathbf{t}_{2}+\mathbf{t}_{1}\right) \\
& (\mathrm{R} \mid \mathbf{t})^{-1}=\left(\mathrm{R}^{-1} \mid-\mathrm{R}^{-1} \mathbf{t}\right) \tag{7}
\end{align*}
$$

For each symmetry operation $\mathbf{t}_{i} g_{j}, i=1,2, \ldots, m ; j=1,2, \ldots, n$ which appears in the 'Symmetry operation' subtable of each space group we have added, below the geometric notation, its corresponding Seitz notation. ${ }^{\mathbf{1}}$ For example, for the space group $P 4_{2} m c$ we have:

[^0]
Symmetry operations

(1) 1
(2) $20,0, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right) 0,0, z$
(4) $4^{-}\left(0,0, \frac{1}{2}\right) 0,0, z$
$(1 \mid 0,0,0)$
$\left(2_{z} \mid 0,0,0\right)$
$\left(4_{z} \mid 0,0, \frac{1}{2}\right)$
$\left(4 z^{-1} \mid 0,0, \frac{1}{2}\right)$
(5) $m x, 0, z$
(6) $m 0, y, z$
(7) $c x, \bar{x}, z$
$\left(m_{y} \mid 0,0,0\right)$
$\left(m_{x} \mid 0,0,0\right)$
$\left(m_{x y} \mid 0,0, \frac{1}{2}\right)$
(8) $c x, x, z$

The R-symbol notation of the Seitz notation $(\mathrm{R} \mid \mathbf{t})$ used in these tables is that used for the Seitz notation in the symmetry-operations tables in International Tables for Crystallography, Volume E, Subperiodic Groups (2010) and in the international-like tables of properties of both magnetic subperiodic groups (Litvin, 2005) and magnetic space groups (Litvin, 2008). However, there is a wide variety of notation used for the symbol R in Seitz notation and consequently we have included in Appendix A a conversion table for ten varieties of notations used for the symbol R.

APPENDIX A

We compare here the notation used for the point-group operation R of Seitz symbols ($\mathrm{R} \mid \mathbf{t}$) in the supplementary material 'Seitz nota-

1	2a	2b	2c	3	4	5	6	7	8	9	10	11	12
1)	1		$\mathrm{x}, \mathrm{y}, \mathrm{z}$	1	e	E	E	1	1	h_{1}	E	ε	1
2)	3^{+}	0,0,z	$\bar{y}, x-y, z$	$3{ }_{2}$	$3{ }_{2}$	C_{3}^{+}	C_{3}^{+}	3	6^{2}	h_{3}	$C_{6}^{2 z}$	$\delta_{3 z}$	3
3)	3	0,0,z	$\bar{x}+y, \bar{x}, z$	3^{-1}	3_{2}^{2}	C_{3}^{-}	C_{3}^{-}	3^{2}	6^{4}	h_{5}	$C_{6}^{4 z}$	$\delta_{32}{ }^{-1}$	5
4)	2	0,0,z	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{z}$	$2{ }_{2}$	22	C_{2}	C_{2}	2	6^{3}	h_{4}	C_{2}	δ_{22}	4
5)	6	0,0,z	$y, \bar{x}+y, z$	$6 z^{-1}$	6_{z}^{5}	C_{6}^{-}	C_{6}^{-}	6^{5}	6^{5}	h_{6}	$C_{6}^{5 z}$	$\delta_{62}{ }^{-1}$	6
6)	$6{ }^{+}$	0,0,z	$x-y, x, z$	6	6 z	C_{6}^{+}	C_{6}^{+}	6	6	h_{2}	C_{6}^{z}	δ_{62}	2
7)	2	x, x, 0	y, x, z	$2{ }^{\text {xy }}$	$2^{\text {x }}$	$C_{23}^{\prime \prime}$	$C_{23}^{\prime \prime}$	$2{ }_{5}$	25	h_{11}	$u^{x y}$	$\delta^{\prime 2}$	9
8)	2	$\mathrm{x}, 0,0$	$x-y, \bar{y}, \bar{z}$	2 x	$2^{\text {x }}$	$C_{21}^{\prime \prime}$	$C_{21}^{\prime \prime}$	21	21	h_{9}	$\mathrm{U}^{\text {x }}$	$\delta_{24}{ }^{\prime}$	7
9)	2	0,y,0	$\bar{x}, \bar{x}+y, \bar{z}$	2 y	$2^{\text {x }}$	$C_{22}^{\prime \prime}$	$C_{22}^{\prime \prime}$	23	23	h_{7}	U^{y}	$\mathrm{\delta}_{23}{ }^{\prime}$	11
10)	2	$\mathrm{x}, \overline{\mathrm{x}}, 0$	$\overline{\mathrm{y}}, \overline{\mathrm{x}}, \overline{\mathrm{z}}$	23	2γ	C_{23}^{\prime}	C_{23}^{\prime}	26	$2{ }_{2}$	h_{8}	U^{3}	$\delta^{\prime \prime}{ }_{22}$	12
11)	2	x,2x,0	$\overline{\mathrm{x}}+\mathrm{y}, \mathrm{y}, \overline{\mathrm{z}}$	$2{ }_{2}$	2 y	C_{21}^{\prime}	C_{21}^{\prime}	$2{ }_{2}$	24	h_{12}	U^{2}	$\delta^{\prime \prime}{ }_{24}$	10
12)	2	$2 \mathrm{x}, \mathrm{x}, 0$	$x, x-y, \bar{z}$	$2{ }_{1}$	2 y	C_{22}^{\prime}	C_{22}^{\prime}	24	26	h_{10}	U^{1}	$\delta^{\prime \prime}{ }_{23}$	8
13)	T	0,0,0	$\bar{x}, \bar{y}, \bar{z}$	1	i	I	i	T	2	h_{13}	I	i	13
14)	$\overline{3}^{+}$	0,0,z	$y, \bar{x}+\mathrm{y}, \bar{z}$	$\overline{3}_{2}$	$\overline{3}_{z}$	S_{6}^{-}	S_{6}^{-}	3	$\tilde{6}^{5}$	h_{15}	$S_{6}^{5 z}$	σ_{6}	15
15)	$\overline{3}$	0,0,z	$x-y, x, \bar{z}$	$\overline{3}_{z}{ }^{-1}$	$\overline{3}_{z}^{5}$	S_{6}^{+}	S_{6}^{+}	$\overline{3}^{2}$	\%	h_{17}	S_{6}^{z}	$\sigma_{6}{ }^{-1}$	17
16)	m	$x, y, 0$	x, y, z	m_{z}	m_{2}	σ_{h}	m	m	m	h_{16}	σ^{2}	σ	16
17)	$\overline{6}$	0,0,z	$\bar{y}, x-y, \bar{z}$	$\overline{6}_{2}{ }^{-1}$	$\overline{6}^{5}$	S_{3}^{+}	S_{3}^{+}	$\overline{6}^{5}$	3	h_{18}	S_{3}^{z}	$\sigma_{3}{ }^{-1}$	18
18)		0,0,z	$\overline{\mathrm{x}}+\mathrm{y}, \overline{\mathrm{x}}, \bar{z}$	$\mathrm{\sigma}_{2}$	$\overline{6}_{z}$	S_{3}^{-}	S_{3}^{-}	6	$\tilde{3}^{5}$	h_{14}	$S_{3}^{2 z}$	σ_{3}	14
19)	m	$\mathrm{x}, \overline{\mathrm{x}}, \mathrm{z}$	$\overline{\mathrm{y}}, \overline{\mathrm{x}}, \mathrm{z}$	m_{xy}	m_{\times}	σ_{13}	σ_{13}	m_{5}	m_{2}	h_{23}	$\sigma^{x y}$	$\sigma^{\prime}{ }^{\prime}$	21
20)	m	$x, 2 x, z$	$\bar{x}+y, y, z$	$\mathrm{m}_{\text {x }}$	m_{x}	$\sigma_{v 1}$	σ_{v1}	m_{1}	m_{6}	h_{21}	σ^{x}	$\sigma^{\prime}{ }^{\prime}$	19
21)	m	$2 \mathrm{x}, \mathrm{x}, \mathrm{z}$	$x, x-y, z$	m_{y}	m_{\times}	σ_{12}	$\sigma_{v 2}$	m_{3}	m_{4}	h_{19}	σ^{y}	$\sigma^{\prime 2}$	23
22)	m	x, x, z	y, x, z	m_{3}	m_{r}	$\sigma_{\text {d3 }}$	$\sigma_{\text {d3 }}$	m_{6}	m_{5}	h_{20}	σ^{3}	$\sigma^{\prime \prime}{ }_{22}$	24
23)	m	x,0,z	$x-y, \bar{y}, z$	m_{2}	m_{y}	$\sigma_{\text {d1 }}$	$\sigma_{\text {d1 }}$	m_{2}	m_{3}	h_{24}	σ^{2}	σ^{24}	22
24)	m	$0, y, z$	$\overline{\mathrm{x}}, \overline{\mathrm{x}}+\mathrm{y}, \mathrm{z}$	m_{1}	m_{y}	$\sigma_{\text {d2 }}$	$\sigma_{\text {d2 }}$	m_{4}	m_{1}	h_{22}	σ^{1}	$\sigma_{23}{ }_{23}$	20

Figure 2
Comparison table of notation used for the point-group R operation of Seitz notation and the corresponding symbols used in ITC-A: hexagonal point-group operations.
tion for symmetry operations of one-, two- and three-dimensional space groups' with the corresponding symbols used in ITC-A and in other sets of symbols of point-group operations. The comparison table is divided into three parts, the first for cubic point-group operations (Fig. 1), the second for hexagonal point-group operations (Fig. 2), and the third for the point-group-operation notation used in $I T C-A$ for trigonal space groups described with rhombohedral coordinate axes (Fig. 3). Each subtable is divided into 12 columns, except for the third which contains only three and compares the point-group operations used in the Seitz symbols only to the corresponding symbols used in ITC-A:

Column (1). Sequential numbering of the point-group operations in each figure: this numbering also specifies the point-group operation as the point-group operation associated with the symmetry operation of the same number listed in ITC-A for, respectively, the cubic space group No. 221, $\operatorname{Pm} \overline{3} m$, the hexagonal space group No. 191, P6/mmm, and the trigonal space group No. 166, $R \overline{3} m$, described in rhombohedral coordinate axes.

Columns (2a) and (2b). Point-group operation description taken from the geometric description of the symmetry operation given in ITC-A.

1	2a	2b	2c	3
1)	1		x, y, z	1
2)	3^{+}	$\mathrm{x}, \mathrm{x}, \mathrm{x}$	z, x, y	$3_{\text {xyz }}$
3)	3	$\mathrm{x}, \mathrm{x}, \mathrm{x}$	y, z, x	$3{ }^{x y z}{ }^{-1}$
4)	2	$\mathrm{x}, \overline{\mathrm{x}}, 0$	$\bar{y}, \bar{x}, \bar{z}$	$22_{\text {xy }}$
5)	2	$0, y, \bar{y}$	$\bar{x}, \bar{z}, \bar{y}$	$22_{\bar{y} z}$
6)	2	$\overline{\mathrm{x}}, 0, \mathrm{x}$	$\bar{z}, \bar{y}, \bar{x}$	$22_{\bar{x} 2}$
7)	1	0,0,0	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}}$	T
8)	$\overline{3}^{+}$	x, x, x	$\bar{z}, \bar{x}, \bar{y}$	$\overline{3}_{\text {xyz }}$
9)	$\overline{3}$	$\mathrm{x}, \mathrm{x}, \mathrm{x}$	$\overline{\mathrm{y}}, \overline{\mathrm{z}}, \overline{\mathrm{x}}$	$\overline{3}_{x y z}{ }^{-1}$
10)	m	$\mathrm{x}, \mathrm{x}, \mathrm{z}$	y, x, z	$\mathrm{m}_{\text {xy }}$
11)	m	x, y, y	x,z,y	m_{yz}
12)	m	x, y, x	z, y, x	$\mathrm{m}_{\overline{\mathrm{x}} \mathrm{z}}$

Figure 3
Comparison table of notation used for the point-group R operation of Seitz notation and the corresponding symbols used in $I T C-A$: trigonal space groups with rhombohedral coordinate axes.

Column (2c). Corresponding coordinate triplets found in the General positions in ITC-A. These may be interpreted as a shorthand description of the point-group operation in matrix notation. This notation is also known as Jones faithful representation.

Column (3). Point-group notation used for R in the tabulations of 'Seitz notation for symmetry operations of one-, two- and threedimensional space groups' in the supplementary material. This notation has been used in the Seitz notation given in Vol. E, Subperiodic Groups of International Tables for Crystallography (2010), and in the international-like tables of the properties of both magnetic subperiodic groups (Litvin, 2005) and magnetic space groups (Litvin, 2008).

Column (4). Point-group notation used in Chapter 3.4 of Vol. D of International Tables of Crystallography, Physical Properties of Crystals (Janovec \& Privratska, 2003) and Kopský \& Bocek (2003) in accompanying software.

Column (5). Point-group notation used by Bradley \& Cracknell (1972).

Column (6). Point-group notation used by Altmann \& Herzig (1994).

Column (7). Point-group notation used by Ascher (1966).
Column (8). Point-group notation used by Koptsik $(1966,1971)$.
Column (9). Point-group notation used by Kovalev (1965).
Column (10). Point-group notation used by Zak et al. (1969).
Column (11). Point-group notation used by Herring (1942, 1974).
Column (12). Point-group notation used by Miller \& Love (1967).

References

Altmann, S. L. \& Herzig, P. (1994). Point Group Theory Tables. Oxford: Clarendon Press.
Ascher, E. (1966). Properties of Shubnikov Point Groups, Part 1. Battelle Report, Geneva.
Bradley, C. J. \& Cracknell, A. P. (1972). The Mathematical Theory of Symmetry in Solids. Oxford University Press.
Burns, G. \& Glazer, A. M. (2007). Space Groups for Solid State Physicists, 2nd ed. New York: Academic Press.
Herring, C. (1942). J. Franklin Inst. 233, 525-543.
Herring, C. (1974). Character Tables for Two Space Groups, Table 9.1.1 in Symmetry Principles in Solid State and Molecular Physics, edited by M. Lax. New York: Wiley-Interscience.

short communications

International Tables for Crystallography (2005). Vol. A, Space-Group Symmetry, edited by Th. Hahn. Heidelberg: Springer. (Previous editions: 1983, 1987, 1995 and 2002.)
International Tables for Crystallography (2010). Vol. E, Subperiodic Groups, edited by V. Kopský \& D. B. Litvin. Chichester: Wiley. (Previous edition: 2002.)

International Tables for X-ray Crystallography (1976). Vol. I, Symmetry Groups, edited by N. F. M. Henry \& K. Lonsdale. Birmingham: Kynoch Press. (Previous editions: 1952, 1965, 1969.)
Janovec, V. \& Privratska, J. (2003). International Tables for Crystallography, Vol. D, Physical Properties of Crystals, edited by A. Authier, ch. 3.4, Domain structures. Dordrecht: Kluwer Academic Publishers.
Kopský, V. \& Bocek, P. (2003). Supplementary software GI*KoBo-1 to International Tables for Crystallography, Vol. D, Physical Properties of Crystals, edited by A. Authier. Dordrecht: Kluwer Academic Publishers.
Koptsik, V. A. (1966). Shubnikov Groups. Handbook on the Symmetry and Physical Properties of Crystal Structures. Moscow: Izd MGU.

Koptsik, V. A. (1971). Shubnikov Groups. Handbook on the Symmetry and Physical Properties of Crystal Structures, translated by J. Kopecky \& B. O. Loopstra. Fysica Memo 175, Stichting, Reactor Centrum Nederlands.
Kovalev, O. V. (1965). Irreducible Representations of the Space Groups. New York: Gordon and Breach.
Litvin, D. B. (2005). Acta Cryst. A61, 382-385.
Litvin, D. B. (2008). Acta Cryst. A64, 419-424.
Miller, S. C. \& Love, W. F. (1967). Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups. Boulder: Pruett Press.
Seitz, F. (1934). Z. Kristallogr. 88, 433-459.
Seitz, F. (1935a). Z. Kristallogr. 90, 289-313.
Seitz, F. (1935b). Z. Kristallogr. 91, 336-366.
Seitz, F. (1936). Z. Kristallogr. 94, 100-130.
Zak, J., Casher, A., Gluck, M. \& Gur, Y. (1969). The Irreducible Representations of Space Groups. New York: W. A. Benjamin, Inc.

[^0]: ${ }^{\mathbf{1}}$ Supplementary tables 'Seitz notation for symmetry operations of one-, twoand three-dimensional space groups' are available from the IUCr electronic archives (Reference: PZ5089). Services for accessing these archives are described at the back of the journal. These tables may also be downloaded from http://www.bk.psu.edu/faculty/Litvin/download.html.

